Искусственный интеллект  : Физика : Информатика - на REFLIST.RU

Искусственный интеллект : Физика : Информатика - на REFLIST.RU

Система поиска www.RefList.ru позволяет искать по собственной базе из 9 тысяч рефератов, курсовых, дипломов, а также по другим рефератным и студенческим сайтам.
Общее число документов более 50 тысяч .

рефераты, курсовые, дипломы главная
рефераты, курсовые, дипломы поиск
запомнить сайт
добавить в избранное
книжная витрина
пишите нам
  Ссылки:
Италия из Челябинска
Список категорий документа Физика Информатика
Искусственный интеллект

Искусственный интеллект

комп-ры, Искусственный интеллект, Программирование и комп-ры, Программирование, Искусственный, интеллект Ключевые слова
страницы: 1  2  3  4 
Текущая страница: 1


РАСПОЗНАВАНИЕ РЕЧИ.

По мере развития компьютерных систем становится все более очевидным, что использование этих систем намного расширится, если станет возможным использование человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.
Существующие технологии распознавания речи не имеют пока достаточных возможностей для их широкого использования, но на данном этапе исследований проводится интенсивный поиск возможностей употребления коротких многозначных слов (процедур) для облегчения понимания. Распознавание речи в настоящее время нашло реальное применение в жизни, пожалуй, только в тех случаях, когда используемый словарь сокращен до 10 знаков, например при обработке номеров кредитных карт и прочих кодов доступа в базирующихся на компьютерах системах, обрабатывающих передаваемые по телефону данные. Так что насущная задача - распознавание по крайней мере 20 тысяч слов естественного языка - остается пока недостижимой. Эти возможности пока недоступны для широкого коммерческого использования. Однако ряд компаний своими силами пытается использовать уже существующие в данной области науки знания.
Для успешного распознавания речи следует решить следующие задачи:
обработку словаря (фонемный состав),
обработку синтаксиса,
сокращение речи (включая возможное использование жестких сценариев),
выбор диктора (включая возраст, пол, родной язык и диалект),
тренировку дикторов,
выбор особенного вида микрофона (принимая во внимание направленность и местоположение микрофона),
условия работы системы и получения результата с указанием ошибок.
Существующие сегодня системы распознавания речи основываются на сборе всей доступной (порой даже избыточной) информации, необходимой для распознавания слов. Исследователи считают, что таким образом задача распознавания образца речи, основанная на качестве сигнала, подверженного изменениям, будет достаточной для распознавани, но тем неменее в настоящее время даже при распознавании небольших сообщений нормальной речи, пока невозможно после получения разнообразных реальных сигналов осуществить прямую трансформацию в лингвистические символы, что является желаемым результатом.
Вместо этого проводится процесс, первым шагом которого является первоначальное трансформирование вводимой информации для сокращения обрабатываемого объема так, чтобы ее можно было бы подвергнуть компьютерному анализу. Примером является «техника сопоставления отрезков», позволяющая сократить вводимую информацию с 50'000 до 800 битов в секунду. Следующим этапом является спектральное представление речи, получившееся путем преобразования Фурье. Результат преобразования Фурье позволяет не только сжать информацию, но и дает возможность сконцентрироваться на важных аспектах речи, которые интенсивно изучались в сфере экспериментальной фонетики. Пример такого представления см на рис. Спектральное представление достигнуто путем использования широко-частотного анализа записи.
Хотя спектральное представление речи очень полезно, необходимо помнить, что изучаемый сигнал весьма разнообразен. Разнообразие возникает по многим причинам, включая:
различия человеческих голосов;
уровень речи говорящего;
вариации в произношении;
нормальное варьирование движения артикуляторов (языка, губ, челюсти, нёба).
Для устранения негативного эффекта влияния варьирования голосового тракта на процесс распознавания речи было использовано множество методов. Первым делом рассматривалась характеристика пространства траектории артикуляторных органов, включая гласные, используемые говорящим. Наиболее удачные формы трансформации, использованной для сокращения различий, были впервые представлены Сакоя & Чибо и назывались динамичными искажениями (dynamic time warping). Техника динамичного искажения используется для временного вытягивания и сокращения расстояния между искаженным спектральным представлением и шаблоном для говорящего. Использование данной техники дало улучшении точного распознавания (~20-30%). Метод динамичного искажения используют практически все коммерчески доступные системы распознавания, показывающие высокую точность сообщения при использовании. Техника динамичного искажения представлена на рис.2. Вначале сигнал преобразовывается в спектральное представление, где определяется немногочисленный, но высокоинформативный набор параметров. Затем определяются конечные выходные параметры для варьирования голоса(следует отметить, что данная задача не является тривиальной) и производится нормализация для составления шкалы параметров, а также для определения ситуационного уровня речи. Вышеописанные измененные параметры используются затем для создания шаблона. Шаблон включается в словарь, который характеризует произнесение звуков при передаче информации говорящим, использующим эту систему. Далее в процессе распознавания новых речевых образцов (уже подвергшихся нормализации и получивших свои параметры), эти образцы сравниваются с шаблонами, уже имеющимися в словаре, используя динамичное искажение и похожие метрические измерения. В настоящее время этот метод изучается и дополняется.



Текущая страница: 1

страницы: 1  2  3  4 
Список предметов Предмет: Физика Информатика
Искусственный интеллект Тема: Искусственный интеллект
комп-ры, Искусственный интеллект, Программирование и комп-ры, Программирование, Искусственный, интеллект Ключевые слова: комп-ры, Искусственный интеллект, Программирование и комп-ры, Программирование, Искусственный, интеллект
   Книги:


Copyright c 2003 REFLIST.RU
All right reserved. liveinternet.ru

поиск рефератов запомнить сайт добавить в избранное пишите нам