|
|
|
|
|
|
|
|
страницы:
1
2
3
Текущая страница: 1
|
|
В условиях рыночной экономикистепень неопределенности экономического поведения субектов рынка достаточно высока . Всвязи с этим большое практическое значение приобретают методы перспективного анализа , когда нужно принимать управленческие решения, оценивая возможные ситуации и делая выбор из нескольких альтернативных вариантов . Теоритически существует четыре типа ситуаций , в которых необходимо проводить анализ и принимать управленческие решения , в том числе и на уровне предприятия : в условиях определенности , риска , неопределенности , конфликта . Рассмотрим каждый из этих случаев .
1. Анализ и принятие управленческих решений в условиях определенности . Это самый простой случай : известно аоличество возможных ситуаций (вариантов) и их исходы . Нужно аыбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации : а) Имеется два возможных варианта ; n=2 В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов . Последовательность действий здесь следующая : определяется критерий по которому будет делаться выбор ; методом “ прямого счета ” исчисляются значения критерия для сравниваемых вариантов ; вариант с лучшим значением критерия рекомендуется к отбору . Возможны различные методы решения этой задачи . Как правило они подразделяются на две группы : методы основанные на дисконтированных оценках ; методы , основанные на учетных оценках . Первая группа методов основывается на следующей идее . Денежные доходы , поступающие на предприятие в различные моменты времени , не должны суммироваться непосредственно ; можно суммировать лишь элементы приведенного потока . Если обозначить F1,F2 ,....,Fn прогно коэфициент дисконтирования зируемый денежный поток по годам , то i-й элемент приведенного денежного потока Рi рассчитывается по формуле : Pi = Fi / ( 1+ r ) i где r- коэфициент дисконтирования. Назначение коэфициента дисконтирования состоит во временной упорядоченности будующих денежных поступлений ( доходов ) и приведении их к текущему моменту времени . Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будующих доходов , ожидаемых к поступлению в течении ряда лет . В этом случае коэфициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал . Итак последовательность действий аналитика такова ( расчеты выполняются для каждого альтернативного варианта ) : расчитывается величина требуемых инвестиций (экспертная оценка ) , IC ; оценивается прибыль ( денежные поступления ) по годам Fi ; устанавливается значение коэфициента дисконтирования , r ; определяются элементы приведенного потока , Pi ; расчитывается чистый приведенный эффект ( NPV ) по формуле:
NPV= E Pi - IC сравниваются значения NPV ; предпочтение отдается тому варианту , который имеет больший NPV ( отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта ) . Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции .Последовательность действий аналитика в этом случае такова : расчитывается величина требуемых инвестиций , IC ; оценивается прибыль ( денежные поступления ) по годам , Fi ; выбирается тот вариант , кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции . б) Число альтернативных вариантов больше двух . n > 2 Процедурная сторона анализа существенно усложняется из-за множественности вариантов , техника “ прямого счета “ в этом случае практически не применима . Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем . Имеется n пунктов производства некоторой продукции ( а1,а2,...,аn ) и k пунктов ее потребления ( b1,b2,....,bk ), где ai - обьем выпуска продукции i - го пункта производства , bj - обьем потребления j - го пункта потребления . Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные обьемы производства и потребления равны . Пусть cij - затраты на перевозку еденицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов сдесь может быть очень большим , что исключает применение метода “ прямого счета ” . Итак необходимо решить следующую задачу :
Текущая страница: 1
|
|
|
|
|
|
|
|
|
|