x
ПЛАТОНОВСКИЙ ИДЕАЛИЗМ
Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в
отношении выделения философской концепции. Это высокохудожественное,
захватывающее описание самого процесса становления концепции, с сом-
нениями и неуверенностью, подчас с безрезультатными попытками разре-
шения поставленного вопроса, с возвратом к исходному пункту, много-
численными повторениями и т.п. Выделить в творчестве Платона ка-
кой-либо аспект и систематически изложить его довольно сложно, так
как приходится реконструировать мысли Платона из отдельных высказы-
ваний, которые настолько динамичны, что в процессе эволюции мысли
порой превращаются в свою противоположность.
Платон неоднократно высказывал свое отношение к математике и
она всегда оценивалась им очень высоко: без математических знаний
"человек с любыми природными свойствами не станет блаженным", в сво-
ем идеальном государстве он предполагал "утвердить законом и убедить
тех, которые намереваются занять в городе высокие должности, чтобы
они упражнялись в науке счисления". Систематическое широкое исполь-
зование математического материала имеет место у Платона, начиная с
диалога "Менон", где Платон подводит к основному выводу с помощью
геометрического доказательства. Именно вывод этого диалога о том,
что познание есть припоминание, стал основополагающим принципом пла-
тоновской гносеологии.
Значительно в большей мере, чем в гносеологии, влияние матема-
тики обнаруживается в онтологии Платона. Проблема строения матери-
альной действительности у Платона получила такую трактовку: мир ве-
щей, воспринимаемый посредством чувств, не есть мир истинно сущест-
вующего; вещи непрерывно возникают и погибают. Истинным бытием обла-
дает мир идей, которые бестелесны, нечувственны и выступают по отно-
шению к вещам как их причины и образы, по которым эти вещи создают-
ся. Далее, помимо чувственных предметов и идей он устанавливает ма-
тематические истины, которые от чувственных предметов отличаются
тем, что вечны и неподвижны, а от идей - тем, что некоторые матема-
тические истины сходна друг с другом, идея же всякий раз только од-
на. У Платона в качестве материи началами являются большое и малое,
а в качестве сущности - единое, ибо идеи (они же числа) получаются
из большого и малого через приобщение их к единству. Чувственно
воспринимаемый мир, согласно Платону, создан Богом. Процесс построе-
ния космоса описан в диалоге "Тимей". Ознакомившись с этим описани-
ем, нужно признать, что Создатель был хорошо знаком с математикой и
на многих этапах творения существенно использовал математические по-
ложения, а порой и выполнял точные вычисления.
Посредством математических отношений Платон пытался охарактери-
зовать и некоторые явления общественной жизни, примером чего может
служить трактовка социального отношения "равенство" в диалоге "Гор-
гий" и в "Законах". Можно заключить, что Платон существенно опирался
на математику при разработке основных разделов своей философии: в
концепции "познание - припоминание", учении о сущности материального
бытия, об устройстве космоса, в трактовке социальных явлений и т.д.
Математика сыграла значительную роль в конструктивном оформлении его
философской системы. Так в чем же заключалась его концепция матема-
тики?
Согласно Платону, математические науки (арифметика, геометрия,
астрономия и гармония) дарованы человеку богами, которые "произвели
число, дали идею времени и возбудили потребность исследования все-
ленной". Изначальное назначение математики в том, чтобы "очищался и
оживлялся тот орган души человека, расстроенный и ослепленный иными
делами", который "важнее, чем тысяча глаз, потому что им одним со-
зерцается истина". "Только никто не пользуется ею (математикой) пра-
вильно, как наукою, влекущей непременно к сущему". "Неправильность"
математики Платон видел прежде всего в ее применимости для решения
конкретных практических задач. Нельзя сказать, чтобы он вообще отри-
цал практическую применимость математики. Так, часть геометрии нужна
для "расположения лагерей", "при всех построениях как во время самих
сражений, так и во время походов". Но, по мнению Платона, "для таких
вещей ...достаточна малая часть геометрических и арифметических вык-
ладок, часть же их большая, простирающаяся далее, должна ...способс-
твовать легчайшему усвоению идеи блага". Платон отрицательно отзы-
вался о тех попытках использования механических методов для решения
математических задач, которые имели место в науке того времени. Его
неудовлетворенность вызывало также принятое современниками понимание
природы математических объектов. Рассматривая идеи своей науки как
отражение реальных связей действительности, математики в своих ис-
следованиях наряду с абстрактными логическими рассуждениями широко
использовали чувственные образы, геометрические построения. oces$u
Текущая страница: 1
|